US009317380B2

a2 United States Patent

Mahindru et al.

US 9,317,380 B2
Apr. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

PRESERVING MANAGEMENT SERVICES
WITH SELF-CONTAINED METADATA
THROUGH THE DISASTER RECOVERY LIFE
CYCLE

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Ruchi Mahindru, Elmsford, NY (US);
Harigovind V. Ramasamy, Ossining,
NY (US); Soumitra Sarkar, Cary, NC
(US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 108 days.

Appl. No.: 14/268,046

Filed: May 2, 2014

Prior Publication Data

US 2015/0317222 Al Nov. 5, 2015

Int. CL.

GO6F 1120 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC GO6F 11/2023 (2013.01); HO4L 67/1095

(2013.01)
Field of Classification Search

CPC ... GOG6F 3/065; GOGF 3/067;, GOGF 11/2069;
GOGF 11/2094; GOGF 11/2074; GOGF 11/1451;
GOGF 11/1469; GOGF 11/1435; GOGF 11/1461;
GOG6F 11/2058; GOGF 17/30578; GOGF
2201/855; GOGF 11/1453; GOGF 11/1458

See application file for complete search history.

Site_1 402

Monitoring
Server_1

408 Policy
Mapper_1

Customer

SITE-LEVEL FAl
MANAGER

(56) References Cited
U.S. PATENT DOCUMENTS
7,275,177 B2* 9/2007 Armangau GOGF 11/2074
707/999.202
7,600,146 B2* 10/2009 Liccione GOGF 11/2023
714/15
(Continued)
FOREIGN PATENT DOCUMENTS
WO W02007008296 1/2007
OTHER PUBLICATIONS

Peter Mell & Tim Grance, “The NIST Definition of Cloud Comput-
ing”, Version 15, Oct. 7, 2009, Computer Security Division Informa-
tion Technology Laboratory, National Institute of Standards and
Technology, Sep. 2011.

(Continued)

Primary Examiner — Nadeem Igbal
(74) Attorney, Agent, or Firm —Louis .
Otterstedt, Ellenbogen & Kammer, LLP

Percello;

(57) ABSTRACT

During normal operation, at a first site, of a disaster recovery
management unit, at least one customer workload machine, at
least one management service machine, and metadata for the
at least one management service machine are replicated to a
remote disaster recovery site. After a disaster at the first site,
a replicated version of the at least one customer workload
machine and a replicated version of the at least one manage-
ment service machine are brought up at the remote disaster
recovery site. A replicated version of the metadata for the at
least one management service machine is reconfigured by
executing, on the replicated version of the at least one man-
agement service machine, a failover script, to obtain recon-
figured replicated metadata for the replicated version of the at
least one management service machine. When the first site
comes back up, failback is carried out, essentially in the
reverse order.

3 Claims, 10 Drawing Sheets

Site_n 404

Monitoring
Server_n

420V

Customer
Server_n
>

4
ILBACK
597

418

licy
rn
>

Event-Pol
Mapper.
2

~

DR SITE 406

599 DR
FAILBACK
MANAGER

438“

A. MONITORING +
EVENT-POLICY
MAPPER FAILBACK

f_)H

Monitoring
Server_1
REPLICA

Policy
Mapper_1
REPLICA

Customer
Server_1
REPLICA

412DR

STORAGE

Customer
Server_n

Monitoring
Server_n [—»]

Event-Policy
Mapper_n

SYSTEM

REPLICA REPLICA REPLICA

a2V IJ,I 430’VI<LI

NS a2V ;’

1 1 1 f

by hi T -!

~o N \ S L .
h..-—"”

US 9,317,380 B2
Page 2

(56)

8,276,016
8,775,394

2007/0185934
2007/0234342
2008/0080497
2011/0047548
2012/0203742
2012/0284707
2014/0040658

2014/0372378

References Cited

U.S. PATENT DOCUMENTS

B2 9/2012 D’Souza

B2* 7/2014 SmoOOtcocve..
Al 8/2007 Cannon

Al 10/2007 Flynn

Al 4/2008 Meijer

Al 2/2011 Traut

Al* 82012 Goodman
Al* 11/2012 Janakiraman
Al* 2/2014 Adler
Al* 12/2014 Long ..o

GO6F 11/2069

GO6F 11/1469

GO6F 11/2025

OTHER PUBLICATIONS

Prasad Calyam, Phani Kumar Arava, Nathan Howes, Siddharth
Samsi, Chris Butler, Jeff Jones, “Network Tuning and Monitoring for
Disaster Recovery Data Backup and Retrieval”, OSC Technical
Whitepaper, 2005.

Yu Deng, “Preserving Management Services With Distributed
Metadata Through the Disaster Recovery Life Cycle”, unpublished
U.S. Appl. No. 14/623,013, filed Feb. 16, 2015.

Yu Deng, Unpublished U.S. Appl. No. 14/948,312, filed Nov. 21,
2015, Preserving Management Services With Distributed Metadata

707/674

707/646 Through the Disaster Recovery Life Cycle , pp. 1-42 plus 13 sheets
GOGF 3/0607 .
7181 formal drawings.

List of IBM Patents or Patent Applications Treated as Related.
714/4.11

GO6F 11/1451

707/646 * cited by examiner

US 9,317,380 B2

Sheet 1 of 10

Apr. 19,2016

U.S. Patent

[DIA
(SHEMA3C
wneana | AV S
Yy Yz
SA LAY Y
YHOMIEN] | ONISSIo0Hd
AMOWIN 0z g,
3L
(SIFOVIIINI O/
FHOVD | e =
WILSAS
E L)
e o WVd | oo
Yoz MIAUIS WILSAS ¥ILNNOD

‘71

U.S. Patent Apr. 19,2016 Sheet 2 of 10 US 9,317,380 B2

FIG. 2

54C

S4A

US 9,317,380 B2

Sheet 3 of 10

Apr. 19,2016

U.S. Patent

& DI
VL0 FUVMLAOS ANV FHVMAVH
RECER SIONSS
SINILSAS 2IN03)IyoNy
FUVMLA0S NOLLYOMddY
JSVAVIVA OROWLIN ONDRIOMULIN glowespeig SWALSAS — ngpy sewesjule

@®SeuegX

e B R E

SNOLLYOIMddy SYRIOMIAN 39vdOLS NOLLVZIVNLYIA
SINIMD TWNLYIA WAL TVNLMIA WLIA SIANAS TYALLMIA
B (X Bo L
ﬂ “_ O N
INENERI Y
ININTI4TINA
aNY Hzm“,_um\mﬂzé WLHOd @ﬂ.m@& ONINOISINOYd
NIy 1d JOINIZS . oNRaLa [[FOHNO0S3H
9
SAVO DIIOM
ININIOYNYIA
JNEIRE €
40131530 [lonissaooud [[ENSs30oud| SEREEC 3104034 [INOLLYOIAYN
T80 [[NOILOVSNvaL[SPHATYNY [fvooussvio ANV ANY
IHVMLH0S

US 9,317,380 B2

Sheet 4 of 10

Apr. 19,2016

U.S. Patent

:
o
F 3

pa—a—
- -
-

-
-

-

< 17 17 17 171 11
LSy e TP N g gy S
YoId3d YaNd3y vaId3y vaInd3y voIld3y voIld3d
u-Jaddepy |« uuealeg U Janleg AOVHOLS | Jaddep | Janlag | Janlag
4aciy
A91104-1usAg Bunojuop Jawoisny Aan04 Buuiojuop Jawoisny
+ ONIHOLINOW 'Y ya oIy
/ WIS 0)
rd ~ -
I\ ’
] /}
- 1 =~ -=T
V4 // i ! \
/ 1 A Re .. —_
I \ -
[._.._ 1| vweishs . 1 | waisAs 1
Qﬂ “ abeioig ._ 17 _. abeinig __
s I ! < | !
useddeyy | L .J Zxomv 177 e - wnﬂ L /7«? i
fo1104ueAg < < M i _ﬁ ! 17y
. /0T _u % dllod 80 _u I
IENVETS TETVEIN | JONSS AETNELS
Buuoyuopy Jawoysny BuLIoHUOR Jawoysn)
¥Ov U &S . 20F | 8IS
¥ OIA

US 9,317,380 B2

Sheet 5 of 10

Apr. 19,2016

U.S. Patent

4
. I Ly LA L
ALY > //0EY r /8 T 7 //95F ey M.v
volIld3d YaId3y YaInd3ad voIld3ay YoIld3d voIld3y
uladdepy e uleaRg U Jenleg AOVHOLS | Jaddepy ATV | Joneg
£21104-1UBAT Buuoyuopy Jawoisny adeiy Aaijod Bunoyuopy Jawojsng
+ ONIJOLINOW 'Y 4 565

90F 3LIS wQ

U wsIshg

]
I
I
! abeioig

| .r_
\
I
yeey
I ._._ /70?

165 ¥IOVNYIN

= - AOvValv4d 13A3T-3LIS
u saddepy < 1
K < -
foloduan3 _V_\o@ _u A8
uTIonIeS IEINETS
Buuoyuop Jawoysny

Y0¥ U 8IS

S DI

-t
R -7 \
! \
Z I — 1
. I | WaIsAg 1
17 _. abeioig __
<
I I
- W L /_/vmv !
| aeddey | 17 I l_\
ot | &
foiod §0% _v I il
| Janias | Janss
Buriojuopy Jswioisng
AR

US 9,317,380 B2

Sheet 6 of 10

Apr. 19,2016

U.S. Patent

9 DIA

-

INCA 219 U

A

909 SWA LHVLS
ANV $3S534dav dl
NV S3AVN LSOH
WA F9NDIINODIY

019 ¥3A0TIVA

Y314V 31IS HANO NNY 01 dN
11 135 OL ¥3AHY3S ¥3ddvIN AINOd
-INJAT NO LdIHOS H3AOTIV4 NN

7 3

3

809 ¥3A0TIV4

H3L4Y 3LIS HA NO NNY 0L dN
11138 OL (SINIDV HLIM) SINIOd
ANT ANV HIAYIS ONIMOLINOW
NO LdI¥0S ¥3A0TIV4 NNY

709 (43ATIS
‘a109 ‘WNNILY1d
SY HONS)
SIADVII MSIA
¥2I1d3d WO¥A
ALIMOIYd NO
a3svd SWA LYvLS

A

209 3LIS ¥a
OL 434399141
d3A0TIvA

U.S. Patent Apr. 19,2016 Sheet 7 of 10 US 9,317,380 B2

702 RUN MONITORING CONFIGURATION FIXUP SCRIPT

COMMON SCRIPT CHARACTERISTICS:
+SCRIPT CONTAINS MAPPING OF OLD IDENTITIES (HOST NAME/IP ADDRESS) TO NEW
IDS INDR SITE
+SCRIPT HAS ROOT ACCESS TO ALL VMS TO PERFORM FIXUP
*ARRANGED FOR BY DR FAILOVER MANAGER THAT NEEDS SIMILAR ACCESS

A 4

704 SCRIPT RUNS MONITORING SERVER COMMANDS (E.G., CLI OR API) TO ‘DUMP”
CONFIGURATION STATE AND SAVE IT LOCALLY
E.G., WHAT CUSTOMER VYMS HAVE WHICH MONITORING AGENTS INSTALLED
*WHAT ARE THE RULES DEPLOYED TO THE AGENT FOR AUTOMATED ALERTS

706 SCRIPT CONNECTS TO EACH CUSTOMER VM WITH MONITORING INSTALLED, AND
UNINSTALLS EVERYTHING (AGENTS AND RULES)

v

708 SCRIPT USES MONITORING SERVER COMMANDS TO THEN RECONFIGURE ENTIRE
MONITORING ON ALL CUSTOMER VMS USING NEW IDENTITIES (HOST NAME AND/OR IP
ADDRESS)

«.E., REINSTALL AGENT(S) AND REDEPLOY RULES

710 UPDATE MONITORING SERVER CONFIGURATION FILE TO CHANGE REFERENCE TO
EVENT-POLICY MAPPER BASED ON ITS NEW IDENTITY

FIG. 7

U.S. Patent Apr. 19,2016 Sheet 8 of 10 US 9,317,380 B2

802 RUN EVENT-POLICY MAPPER CONFIGURATION FIXUP SCRIPT

*COMMON SCRIPT ASSUMPTION APPLY

*ASSUMPTION NO “WIRING” OF EVENT-POLICY MAPPER TO ANY OTHER MS INSTANCE
(E.G,, TICKETING)

A\ 4

804 THE EVENT DB ENTRIES WILL CONTAIN OLD IDENTITIES OF EVENT SOURCES (E.G.,
VMS)
-SIMPLEST “FIXUP” APPROACH IS TO REMOVE ALL EVENT ENTRIES WITH SUCH
OLD IDENTITIES
-MORE COMPLEX “FIXUP” APPROACH IS TO UPDATE EACH EVENT DB ENTRY
TO REPLACE OLD IDENTITY (HOST NAME AND/OR IP ADDRESS) WITH NEW
IDENTITY)

FIG. 8

US 9,317,380 B2

Sheet 9 of 10

Apr. 19,2016

U.S. Patent

vOI1d3Y } 1enss buuojuop 716

016 (43AY3S)
AINO S3114 @3LIDYYL HO4
‘SNONOYHIONAS :NOILYIITd3d
IHYML40S 13ATTNILSAS F14

806 ALIS %\

906
NOILYDITd3d 13AT1
3714 SNONOYHONAS

T

| — 431vOId3y
<=10N JANTOA

JT0HM
| Janlag BuuoNuol 716

706 (LN311D)
AINO S3114 @3L39UVL
Y04 ‘SNONOYHONAS
'NOILYDITd3Y IHVYMLA0S
TIATT-WILSAS 3114

| dod 206

6 DIA

US 9,317,380 B2

Sheet 10 of 10

Apr. 19,2016

U.S. Patent

01 DIA A

Janas £21104 S:211S ¥ 10 ejepe)sw Juswabeuey JusAg 0) ppy
eoldal 3y Jo 1ey) 0 ssauppe di a1epdn

0L0L — eoidassanias Aoljog 2118 Arewnd wouy Aus Buiddew @) JoWo)sn)-1aAIeS 109188

} 218 Y@ u1 Buluuni eodas J1anIeS Yyoes 1o+

‘7001 elepejswl Ememm:ms_ JuaAg Jo dnxiyy ¥Yqg-1sod

Janies Buuojuopy s811s ¥ JO BjeprIaW Buliojiucyy 0) ppy
(ve Joud) elepersw Jabeuely Janojie] Y Wolj payssl st siy // ealidal ey Jo 18Y) 0) SsaIppe 4| a1epdn
8001 — eol|dal Janles Buuojuoly s.aus Alewud wol salnue ejepelaw Buliojiuow |je 19918S
(eoids) ul pauersal senies Arewud ul sjuabe @ ssnnue palojuow [le Buiunsse / } ayis ¥@ ul Buiuuni ealdal Jsaiss yoes Jo

:eyepejaw Buuoyuop jo dn-x13 ¥ag-1sod

018 ‘wislsAs Bunayon ‘joad Jspuey 19401 ‘A)lISASS 18301 Ausass jusag al weng al Jswoisn)

(a11s Arewud ul Ajuaass-jusas-1awosno Jad Aiua suo) 90T Zeiepelsiy Juswabeuey Jusag 'z

(ssaippe dI)

al Jewoysn) 0l 1003

(eus Auewud ul Jaaies Jad Anus auo) F00T elepeloN Juswabeuep Juaag |

JUSA3 3U) JO AJaAss ay) pue quiod pus jey uo jusbe uab (ssaippe d|)
sy Aq pauodal somaw sy uo paseq palelsuab aq piNoYs JUSAS UR JI SUIWISISP 0) SjNJ DUIBW Iad aiuety | Jeniag

(ous Asewud ul uoneuiquio? yusbe-1anas 1ad Aus 2uo) Z00} eyepeidy buonuop

US 9,317,380 B2

1
PRESERVING MANAGEMENT SERVICES
WITH SELF-CONTAINED METADATA
THROUGH THE DISASTER RECOVERY LIFE
CYCLE

STATEMENT OF GOVERNMENT RIGHTS

Not Applicable.

CROSS-REFERENCE TO RELATED
APPLICATIONS

Not Applicable.

FIELD OF THE INVENTION

The present invention relates to the electrical, electronic
and computer arts, and, more particularly, to information
technology and the like.

BACKGROUND OF THE INVENTION

Disaster recovery (DR) refers to the preparation for recov-
ery or continuation of vital information technology infra-
structure after a disaster. Current disaster recovery techniques
primarily address state maintenance of servers and storage for
servers and applications.

SUMMARY OF THE INVENTION

Principles of the invention provide techniques for preserv-
ing management services with self-contained metadata
through the disaster recovery life cycle. In one aspect, an
exemplary method includes the step of, during normal opera-
tion, at a first site, of a disaster recovery management unit
comprising at least one customer workload machine and at
least one management service machine, replicating to a
remote disaster recovery site the at least one customer work-
load machine, the at least one management service machine,
and metadata for the at least one management service
machine. Additional steps include, after a disaster at the first
site, bringing up, at the remote disaster recovery site, a repli-
cated version of the at least one customer workload machine;
bringing up, at the remote disaster recovery site, a replicated
version of the at least one management service machine; and
reconfiguring a replicated version of the metadata for the at
least one management service machine by executing on the
replicated version of the at least one management service
machine a failover script, to obtain reconfigured replicated
metadata for the replicated version of the at least one man-
agement service machine. Thus, the replicated version of the
at least one management service machine can provide the
management service to the replicated version of the at least
one customer workload machine in the remote disaster recov-
ery site.

As used herein, “facilitating” an action includes perform-
ing the action, making the action easier, helping to carry the
action out, or causing the action to be performed. Thus, by
way of example and not limitation, instructions executing on
one processor might facilitate an action carried out by instruc-
tions executing on a remote processor, by sending appropriate
data or commands to cause or aid the action to be performed.
For the avoidance of doubt, where an actor facilitates an
action by other than performing the action, the action is
nevertheless performed by some entity or combination of
entities.

10

15

20

30

40

45

2

One or more embodiments of the invention or elements
thereof can be implemented in the form of a computer pro-
gram product including a computer readable storage medium
with computer usable program code for performing the
method steps indicated. Furthermore, one or more embodi-
ments of the invention or elements thereof can be imple-
mented in the form of a system (or apparatus) including a
memory, and at least one processor that is coupled to the
memory and operative to perform exemplary method steps.
Yet further, in another aspect, one or more embodiments of
the invention or elements thereof can be implemented in the
form of means for carrying out one or more of the method
steps described herein; the means can include (i) hardware
module(s), (i1) software module(s) stored in a computer read-
able storage medium (or multiple such media) and imple-
mented on a hardware processor, or (iii) a combination of (i)
and (ii); any of (i)-(iii) implement the specific techniques set
forth herein.

Techniques of the present invention can provide substantial
beneficial technical effects.

These and other features and advantages of the present
invention will become apparent from the following detailed
description of illustrative embodiments thereof, which is to
be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a cloud computing node according to an
embodiment of the present invention;

FIG. 2 depicts a cloud computing environment according
to an embodiment of the present invention;

FIG. 3 depicts abstraction model layers according to an
embodiment of the present invention;

FIG. 4 depicts failover in a disaster recovery system with a
monitoring scenario and asynchronous storage replication,
according to an embodiment of the present invention;

FIG. 5 depicts failback in a disaster recovery system with a
monitoring scenario and asynchronous storage replication,
according to an embodiment of the present invention;

FIG. 6 is a flow chart of disaster recovery failover for
monitoring, according to an embodiment of the present inven-
tion;

FIG. 7 is a detailed flow chart of one possible manner of
carrying out step 608 in FIG. 6, according to an embodiment
of the present invention;

FIG. 8 is a detailed flow chart of one possible manner of
carrying out step 610 in FIG. 6, according to an embodiment
of the present invention;

FIG. 9 depicts synchronous file level replication, according
to an embodiment of the present invention; and

FIG. 10 shows exemplary meta-data for a monitoring
example, according to an aspect of the invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

It is understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to a
cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in con-
junction with any other type of computing environment now
known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,

US 9,317,380 B2

3

applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based email). The consumer does not
manage or control the underlying cloud infrastructure includ-
ing network, servers, operating systems, storage, or even
individual application capabilities, with the possible excep-
tion of limited user-specific application configuration set-
tings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

10

15

20

25

30

35

40

45

50

55

60

65

4

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or oft-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized
or proprietary technology that enables data and application
portability (e.g., cloud bursting for load balancing between
clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node is shown. Cloud computing node 10 is
only one example of a suitable cloud computing node and is
not intended to suggest any limitation as to the scope ofuse or
functionality of embodiments of the invention described
herein. Regardless, cloud computing node 10 is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove.

In cloud computing node 10 there is a computer system/
server 12, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer systeny/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, handheld or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the gen-
eral context of computer system executable instructions, such
as program modules, being executed by a computer system.
Generally, program modules may include routines, programs,
objects, components, logic, data structures, and so on that
perform particular tasks or implement particular abstract data
types. Computer system/server 12 may be practiced in dis-
tributed cloud computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed cloud computing
environment, program modules may be located in both local
and remote computer system storage media including
memory storage devices.

As shown in FIG. 1, computer system/server 12 in cloud
computing node 10 is shown in the form of a general-purpose
computing device. The components of computer system/
server 12 may include, but are not limited to, one or more
processors or processing units 16, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types ofbus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video

US 9,317,380 B2

5

Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
teny/server 12 may further include other removable/non-re-
movable, volatile/non-volatile computer system storage
media. By way of example only, storage system 34 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
bus 18 by one or more data media interfaces. As will be
further depicted and described below, memory 28 may
include atleast one program product having a set (e.g., at least
one) of program modules that are configured to carry out the
functions of embodiments of the invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as akeyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
user to interact with computer system/server 12; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter systeny/server 12 to communicate with one or more
other computing devices. Such communication can occur via
Input/Output (I/O) interfaces 22. Still yet, computer system/
server 12 can communicate with one or more networks such
as a local area network (LAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via net-
work adapter 20. As depicted, network adapter 20 communi-
cates with the other components of computer system/server
12 via bus 18. It should be understood that although not
shown, other hardware and/or software components could be
used in conjunction with computer system/server 12.
Examples, include, but are not limited to: microcode, device
drivers, redundant processing units, and external disk drive
arrays, RAID systems, tape drives, and data archival storage
systems, etc.

Referring now to FIG. 2, illustrative cloud computing envi-
ronment 50 is depicted. As shown, cloud computing environ-
ment 50 comprises one or more cloud computing nodes 10
with which local computing devices used by cloud consum-
ers, such as, for example, personal digital assistant (PDA) or
cellular telephone 54A, desktop computer 54B, laptop com-
puter 54C, and/or automobile computer system 54N may
communicate. Nodes 10 may communicate with one another.
They may be grouped (not shown) physically or virtually, in
one or more networks, such as Private, Community, Public, or
Hybrid clouds as described hereinabove, or a combination

10

15

20

25

30

35

40

45

50

55

60

65

6

thereof. This allows cloud computing environment 50 to offer
infrastructure, platforms and/or software as services for
which a cloud consumer does not need to maintain resources
on a local computing device. It is understood that the types of
computing devices 54 A-N shown in FIG. 2 are intended to be
illustrative only and that computing nodes 10 and cloud com-
puting environment 50 can communicate with any type of
computerized device over any type of network and/or net-
work addressable connection (e.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG. 2)
is shown. It should be understood in advance that the compo-
nents, layers, and functions shown in F1G. 3 are intended to be
illustrative only and embodiments of the invention are not
limited thereto. As depicted, the following layers and corre-
sponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architecture
based servers, in one example IBM pSeries® systems; IBM
xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of
software components include network application server
software, in one example IBM WebSphere® application
server software; and database software, in one example IBM
DB2® database software. (IBM, zSeries, pSeries, xSeries,
BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide).

Virtualization layer 62 provides an abstraction layer from
which the following examples of virtual entities may be pro-
vided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 64 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. User portal provides access
to the cloud computing environment for consumers and sys-
tem administrators. Service level management provides
cloud computing resource allocation and management such
that required service levels are met. Service Level Agreement
(SLA) planning and fulfillment provides pre-arrangement
for, and procurement of, cloud computing resources for
which a future requirement is anticipated in accordance with
an SLA.

Workloads layer 66 provides examples of functionality for
which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and mobile desktop.

As noted, disaster recovery (DR) refers to the preparation
for recovery or continuation of vital information technology
infrastructure after a disaster. Current disaster recovery tech-
niques primarily address state maintenance of servers and
storage for servers and applications.

US 9,317,380 B2

7

Advantageously, one or more embodiments provide an
approach to preserve monitoring and event management ser-
vices for failed-over systems in the recovery site after a disas-
ter. One or more embodiments apply to managed services
whose meta-data that is impacted by the DR failover/failback
process is contained within the managed service itself (self-
contained).

At least some embodiments can be extended to other man-
agement services, e.g., patch management, license manage-
ment, asset management.

In some cases, each management service maintains meta-
data including that required for multi-tenancy support. This
meta-data, in some embodiments, has to be replicated with a
higher recovery point objective (RPO) (no-loss), and, after
the DR, the meta-data has to be fixed up based on the state of
the recovered virtual machines (VMs).

One or more embodiments are applicable to disaster recov-
ery in both cloud environments and traditional (non-virtual-
ized) data centers, including those with multi-tenancy such as
hosting services.

Thus, when managed services are employed in an IT envi-
ronment, the management layer 64 needs to be failed over to
the disaster recovery site in the event of an outage. Monitor-
ing is one non-limiting example of a management layer func-
tion. Typically, each of the managed services maintains some
metadata, such as endpoints, customer virtual machines
(VMs), and so on. In the case of event management, the
metadata will be the policies that specify what is to be done
upon the occurrence of certain events. In one or more embodi-
ments, this metadata is failed over and fixed up (also referred
to herein as “reconfigured”) in the recovered VM(s) in the
disaster recovery site.

As noted, current disaster recovery techniques primarily
cover state maintenance of servers and applications such as
storage for servers and applications. From a cloud perspec-
tive, these servers and applications are typically managed
entities. Advantageously, one or more embodiments extend
DR to the state maintenance of the managing entities. Some
embodiments reuse some existing techniques such as storage
replication that are used for the managed entities; however,
these existing techniques are modified in one or more
embodiments to provide additional pre-failover configuration
and post-failover processing.

Again, it is to be emphasized that monitoring and/or event
management are non-limiting exemplary applications; patch-
ing, identity management, asset management, and discovery
processing are other non-limiting examples. In a cloud envi-
ronment, as noted, there is a management layer 64 where
there are tools running to manage the cloud: monitoring,
patching, identity management, asset management, and so
on. When a disaster occurs, there is a transition from the site
where the disaster has occurred to the disaster recover site; as
part of this process, management layer 64 is failed over to the
disaster recovery (failover) site. Failover of VMs, file struc-
tures, and the like are known from prior art. As noted, each of
the management services typically maintains some metadata.
Again, in the example of monitoring, metadata includes VMs,
infrastructure layer, and the tools in the management stack; in
the example of event management, metadata includes poli-
cies setting forth what needs to be done when an event comes
in for a specific customer. An example of this includes auto-
mation policies per customer——certain automated remedia-
tion actions are taken if something happens on the customer’s
VM, e.g., a file system problem. Another example of meta-
data includes the severity, threshold, sampling interval, and
persistence that should be used to raise an alert for a customer
VM. Another example of meta-data includes automation poli-

10

20

25

30

35

40

45

50

55

60

65

8

cies per customer that should determine how and where the
event should be ticketed and routed.

Typically, data must be failed over and fixed up in the
recovered VM in the failover site.

It is important to note that one or more embodiments are
directed to failover for the items that manage the customer’s
workload as opposed to the customer’s workload per se.

Attention should now be given to FIG. 4, which depicts
failover in a disaster recovery system with a monitoring sce-
nario and asynchronous storage replication. Note two sites
402, 404 where customer workloads are running—these can
be cloud or non-cloud sites, and there can be any number of
sites, as indicated by the ellipsis. Replicas reside at disaster
recovery (DR) site 406.

More particularly, first site 402, also designated as Site_1,
includes Customer Server_1, designated as 414, Monitoring
Server_1, designated as 416, and Policy Mapper_1, desig-
nated as 408, all coupled to Storage System_1, designated as
434. Furthermore, n” site 404, also designated as Site_n,
includes Customer Server_n, designated as 418, Monitoring
Server_n, designated as 420, and Event-Policy Mapper_n,
designated as 422, all coupled to Storage System_n, desig-
nated as 436. Disaster recovery (DR) site 406 includes Cus-
tomer Server_1 replica, designated as 438, Monitoring
Server_1 replica, designated as 422, and Policy Mapper_1,
designated as 426, all coupled to the DR storage system,
designated as 412. Furthermore, DR site 406 further includes
Customer Server_n replica, designated as 428, Monitoring
Server_n replica, designated as 430, and Event-Policy Map-
per_n replica, designated as 432, also all coupled to the DR
storage system 412. Finally, DR site 406 includes DR failover
manager 410 which orchestrates the failover process; the
failover process includes not only conventional failover of the
workloads but also of the monitoring servers 416, 420 and the
policy mappers 408, 422.

Note that in general, a “PoD” (point of deployment) is a
unit of management, and a site 402, 404 can, in general,
include one or more PoDs. In order to be a management unit
for disaster recovery purposes, there should be a centralized
repository of MS (monitoring server) instances and topology.
One or more embodiments employ per-MS configuration fix-
up scripts for failover and failback, and make use of MS APIs
(application program interfaces).

In FIG. 4, the asynchronous storage system replication is
indicated by the bold curved arrows from the storage systems
434, 436 to the DR storage system 412. Software based rep-
lication also applies to one or more embodiments.

In normal operation, the customer servers 414, 418 (which,
in general, can be real or virtual, although of course even
virtual servers ultimately reside on one or more real
machines) run one or more customer workloads. The moni-
toring servers 416, 420 monitor those workloads and detect
events. The policy mappers 408, 422 work closely with the
monitoring servers 416, 420 to initiate action in response to
the events detected by the servers 416, 420 according to the
corresponding mapping between events and policies. Each of
the servers and mappers in the sites 402, 404 is asynchro-
nously (not real time) replicated in the DR site 406.

When a disaster occurs (e.g., power outage), the workload
and at least a subset of the servers are brought up at DR site
406. The customer servers can be brought up one-by-one by
using the replicated volume. However, while, say, a server is
now “up” to handle the workload, it is not being monitored;
alerts are not being generated. In one or more embodiments,
to address bringing up the managed service(s), monitoring
servers and policy mappers have also been replicated, as seen
at 424, 426, 430, 432 and eventually are brought up as well.

US 9,317,380 B2

9

However, endpoint addresses have changed—therefore, the
replicas can’t immediately monitor the replicated servers in
the DR site 406; a fix-up is needed so that they can monitor the
replicated servers in the DR environment. One or more
embodiments employ metadata to facilitate the fix-up pro-
cess.

FIG. 5 depicts failback in the disaster recovery system with
monitoring scenario and asynchronous storage replication of
FIG. 4. When the main site (here, Site_n 404) comes back up,
begin background replication as indicated by the bold arrows
from DR storage system 412 to storage systems 434, 436. For
the avoidance of doubt, FIG. 5 depicts a condition wherein
only Site_n is shown as being down. When this replication is
complete, the reverse of the process described with regard to
FIG. 4 is carried out, including for the monitoring servers and
event policy mappers. Using site-level failback manager 597
and DR failback manager 599, start the machines at site 404,
and eventually shut off the machines in DR site 406. Again,
endpoint addresses have changed back to original—there-
fore, the reconstituted servers 420, 422 can’t immediately
monitor the reconstituted server 418 in the site 404; a fix-up is
needed so that they can monitor the reconstituted server(s) in
the site 404. One or more embodiments employ metadata to
facilitate this fix-up process, as well.

It will be appreciated that at least some managed services
run (as one or more VMs) independently of customer VMs,
and that metadata and/or state is local to the managed service.
In one or more embodiments, operations to enable failover
after PoD failure and failback once the PoD is again opera-
tional are as follows:

Steady state: Continuous (optionally asynchronous) repli-

cation of state of PoD-MS 420 to DR site

Failover: Extraction of state from MS replica 430, and

subset+merge with DR-MS instance 430
Failback: Optionally merge the state of DR-MS instance
430 with PoD-MS state 420 in replica of site 404

Asnoted, one or more embodiments use metadata to facili-
tate management services after disaster recovery. One simple
example is in the case of a firewall. The metadata includes the
rules in the firewall policy file. These rules become invalid
when the firewall is moved to the DR site 406, because there
are new IP addresses. A simple map of the IP addresses
associated with site 404 to those associated with DR site 406
can be used for the fix-up.

The metadata is more complex where the failed-over man-
aged service is a monitoring service. Typically, the metadata
in such a case is internally represented in non-relational data-
bases. One or more embodiments leverage application pro-
gram interface(s) (API(s)) provided by the monitoring ser-
vices. An agent is installed on the VM to be monitored,
together with appropriate rules. When provisioning the VM, it
is set up for monitoring. It is worth noting that IBM TIVOLI
MONITORING software available form International Busi-
ness Machines Corporation, Armonk, N.Y., USA, is one non-
limiting example of software that could be run on servers 416,
420, 912, 424, 430, 914 (FIG. 9 is discussed elsewhere
herein). This TIVOLI software has commands that can be
used to set a VM up for monitoring. Note that elements 414,
418, 438, 428 are customer virtual machines but they do not
necessarily have to be virtual; they could be physical in some
circumstances. FIG. 6 is a flow chart of disaster recovery
failover for monitoring. In step 602, failover to the DR site
406 is triggered. In step 604, start VMs in DR site 406 based
on priorities from replica disk images (e.g., “Platinum,”
“Gold,” “Silver”). In step 606, reconfigure the VM host
names and IP addresses and start the VMs in DR site 406.
Steps 602, 604, and 606 are analogous to those known from

30

40

45

55

10

the prior art. In step 608, run a failover script on monitoring
server 420 and customer VM (with agents) to set the moni-
toring server replica 430 up to run on DR site 406 after
failover. FIG. 6 shows the steps in a typical chronological
order. Non-limiting exemplary details of step 608 are given in
FIG. 7. In step 610, run a failover script on Event-Policy
Mapper server 422 to set the Event-Policy Mapper server
replica 432 up to run on DR site 406 after failover. Non-
limiting exemplary details of step 610 are given in FIG. 8.
Processing ends at 612.

Furthermore in this regard, in one or more embodiments,
each of the servers 416, 408, 420,422, 424, 426, 430, and 432
is provided with a failover script and a failback script. The
scripts can be written, for example, in Perl, Java, or any other
suitable current programming language. Furthermore, each
VM (or physical machine) monitored by each monitoring
server is provided with an agent. Refer to servers 414, 418,
438, 428. The agents are registered on machines 416, 420,
424, 430 respectively. Additionally, the agents installed on
machines 414, 418, 438, 428 report the collected metrics to
the monitoring servers 416, 420, 424, 430, respectively. Steps
608, 610 are repeated for each managed service.

FIG. 7 is a detailed flow chart of one possible manner of
carrying out step 608 in FIG. 6. In a non-limiting exemplary
embodiment, at 702, run a monitoring configuration fix-up
script on server 430. The script typically has certain common
script characteristics; for example, the script contains a map-
ping of old identities (host name and/or IP address in site 404)
to new IDs in DR site 406; the script has root access to all VMs
to perform fix-up; and this is arranged for by DR failover
manager 410, which needs similar access. At 704, the script
runs monitoring server commands (e.g., command line inter-
face (CLI) or API) to “dump” configuration state and save it
locally in 424 (e.g., what customer VMs have which moni-
toring agents installed and/or what rules are deployed to the
agent for automated alerts). At 706, the script connects to each
customer VM 428 with monitoring installed, and uninstalls
existing agents and rules. In step 708, the script uses moni-
toring server commands to then reconfigure the entire moni-
toring on all customer VMs using new identities (host name
and/or IP address); i.e., to reinstall agent(s) and redeploy
rules. This can optionally be done in a batch process. In step
710, update the monitoring server configuration file to change
reference to the Event-Policy Mapper 422 based on its new
identity 432. In one or more embodiments, appropriate scripts
and/or agents run in site 406 after a disaster has occurred).

FIG. 8 is a detailed flow chart of one possible manner of
carrying out step 610 in FIG. 6. In step 802, run an event-
policy mapper configuration fix-up (failover) script on server
432. Servers 408, 422 typically have limited metadata, but do
have a list (database or DB) of events wherein the sources
(e.g., VMs) are identified by the old addresses in site 404. In
one or more embodiments, common script assumption apply;
for example, assume no “wiring” of the Event-Policy Mapper
to any other MS instance (e.g., ticketing). In step 804, the
event DB entries contain old identities of event sources (e.g.,
VMs). The simplest “fix-up” approach is typically to remove
all event entries with such old identities. A more complex
“fix-up” approach is to update each event DB entry to replace
the old identity (host name and/or IP address) with the new
identity.

Consider the case of failback for monitoring, referring
again to FIG. 5. Heretofore, in current systems, for each
customer VM, the logical units (LUs) of the VM disks are
replicated from the DR site to the “n”” PoD “PoD_n.” Once
synch-up is nearly complete, the managed VM is taken to a

US 9,317,380 B2

11

quiescent state, final synch-up is completed, and the customer
VM in PoD_n is started. In some instances, this latter step
might have to be delayed.

In one or more embodiments of the invention, which utilize
a monitoring server and policy mapper, delay the step of
starting the customer VM 418 in PoD_n 404 for managed
VMs. For the monitoring server VM, reverse merge the config
(configuration file) of the DR site’s monitoring server 430 to
the PoD_n monitoring server config replica 420. Reverse
merge of configurations into the monitoring server is typi-
cally only done for the customer system groups correspond-
ing to PoD_nmanaged VMs. During the configuration merge,
it may be the case that new rules were defined and/or some
rules were deleted or modified in the DR site 406. The original
1P address for each record is still valid; no change is required.
Replicate the LU of the PoD_n monitoring server to PoD_n.
In one or more embodiments, IP address fix-ups are not
required because the monitoring server has the old IP address
that is valid in the primary site 404.

The steps just described are repeated for the policy mapper
VM 432 being failed back to the replicated machine 422.

The customer VMs are started in PoD_n 404. Management
of these VMs is then commenced. Note that reversing the
starting and managing for these VMs could potentially lead to
complexity in managing systems. For example, the new rules
that were added while PoD_n in 406 will not be evaluated,
deleted rules that were removed while in PoD_n in 406 will
continue to be evaluated or rules that were modified in PoD_n
in 406 will evaluate incorrectly.

FIG. 9 depicts synchronous file level replication. In one or
more embodiments, storage system volumes are dedicated to
VMs. However, VMWare VMFS is a counter-example to this
case. VMware VMFS (Virtual Machine File System) is a
cluster file system available from VMware, Inc. of Palo Alto,
Calif., USA. Other embodiments can be adopted for use with
VMware VMFS and similar systems. For example, mount the
VMES file in loopback mount mode. With asynchronous
replication, the contents of the master (Monitoring Server_1
912 in PoD_1 902) are not up to date with the DR replica
(Monitoring Server_1 replica 914 in DR site 908), as indi-
cated by the notation “whole volume not replicated.” The lag
determines RPO. If the monitoring and/or policy server con-
figuration is updated, DR site 908 will not “see” this for some
predetermined time period; say, “X” seconds. If a PoD disas-
ter occurs between configuration update and replica update,
the DR site will not restart with the latest PoD configuration.
One possible approach is to employ limited synchronous
replication 906.

The skilled artisan will appreciate that different manage-
ment services will have different types of metadata. In the
case of monitoring and event management, monitoring meta-
data typically includes rules to determine when metrics from
an entity indicate incidents (events), while event management
metadata includes customer specific policies regarding auto-
mated ticket handling (ticketing system, support group,
severity, etc.) in response to incidents (events). In the case of
patch management, metadata includes the entity to be
patched, current patch level, patch priority and schedule, and
the like. In the case of firewalls, metadata includes allowing/
disallowing inbound/outbound traffic to/from specific net-
working endpoints (IP addresses and ports).

FIG. 10 shows non-limiting exemplary meta-data; in par-
ticular, monitoring meta-data 1002, first event management
meta-data 1004; and second event management meta-data
1006. Post-disaster recovery fix-up of monitoring meta-data
is shown at 1008. Post-disaster recovery fix-up of event man-
agement meta-data 1004 is shown at 1010.

25

30

40

45

55

12

The skilled artisan will appreciate that many other cases
can be handled by the self-contained meta-data approach in
addition to the non-limiting exemplary embodiment. For
example, consider a virtual load balancing firewall running in
a fully-managed, highly secure IaaS cloud such as IBM
SMART CLOUD ENTERPRISE PLUS available from Inter-
national Business Machines Corporation, Armonk, N.Y.,
USA. Consider such a load balancing firewall running on a
VM, one per customer. In a non-limiting exemplary embodi-
ment, each entry is of the following form:

Key=Source IP address/subnet, Dest. IP addr./subnet, des-

tination port, protocol

Value=allow/disallow (access)

After DR, typically, only a subset of the entries will be
relevant and the destination as well as the source internet
protocol (IP) addresses will need fix-up. For example, the
managing systems could be the source.

Given the discussion thus far, it will be appreciated that, in
general terms, an exemplary method, according to an aspect
of'the invention, includes the step of during normal operation,
at a first site 404, of a disaster recovery management unit
comprising at least one customer workload machine (physi-
cal or virtual) 418 and at least one management service
machine (physical or virtual) 420, 422, replicating to aremote
disaster recovery site the at least one customer workload
machine, the at least one management service machine, and
metadata for the at least one management service machine.
Further steps include, after a disaster at the first site, bringing
up, at the remote disaster recovery site, a replicated version of
the at least one customer workload machine (physical or
virtual) 428; bringing up, at the remote disaster recovery site,
a replicated version of the at least one management service
machine (physical or virtual) 430, 432; and reconfiguring a
replicated version of the metadata for the at least one man-
agement service machine by executing on the replicated ver-
sion of the at least one management service machine a
failover script, to obtain reconfigured replicated metadata for
the replicated version of the at least one management service
machine. Thus, the replicated version of the at least one
management service machine can provide the management
service to the replicated version of the at least one customer
workload machine in the remote disaster recovery site.

In some cases, a further step includes, subsequent to the
disaster, upon the first site coming back up, background rep-
licating from the remote disaster recovery site back to the first
site a restored version of the at least one customer workload
machine, a restored version of the at least one management
service machine, and a restored version of the metadata for
the at least one management service machine. In such cases,
further steps include, once the background replication is com-
plete, bringing up, at the first site, the restored version of the
at least one customer workload machine (physical or virtual)
(e.g., 418 restored); bringing up, at the first site, the restored
version of the at least one management service machine
(physical or virtual) (e.g., 420, 422 restored); and reconfig-
uring the restored version of the metadata for the at least one
management service machine by executing on the restored
version of the at least one management service machine a
failback script, to obtain reconfigured restored metadata for
the restored version of the at least one management service
machine. Thus, the restored version of the at least one man-
agement service machine can provide the management ser-
vice to the restored version of the at least one customer
workload machine in the first site.

The disaster recovery management unit can be located
within a cloud environment and/or within a non-cloud envi-
ronment.

US 9,317,380 B2

13

In some cases, in the replicating step, the at least one
customer workload machine and the at least one management
service machine comprise physical machines. However, in
some cases, in the replicating step, the at least one customer
workload machine and the at least one management service
machine comprise virtual machines executing on one or more
physical machines under control of a hypervisor.

In some instances, in the replicating step, the at least one
management service comprises monitoring and event man-
agement functionality implemented with monitoring and
policy mapper servers.

In some cases, the reconfiguring step 608 is implemented
by uninstalling agents and rules from the replicated version of
the at least one customer workload machine in the remote
disaster recovery site, as at 706; reinstalling the agents and
redeploying the rules on the replicated version of the at least
one customer workload machine in the remote disaster recov-
ery site, using at least one of new host names and new internet
protocol addresses appropriate for the remote disaster recov-
ery site, as at 708; and updating a configuration file of the
replicated version of the at least one management service
machine to point to a replicated policy mapper server in the
remote disaster recovery site, as at 710.

In some cases, in the replicating step, the at least one
management service comprises a firewall.

In some such cases, the reconfiguring (fixing up) step com-
prises applying a map of first site to remote disaster recovery
site internet protocol addresses.

In the replicating step, the at least one management service
can include, for example, patch management, license man-
agement, or asset management.

In some instances, the replication comprises asynchronous
replication. However, in some cases, the replication com-
prises synchronous replication for at least targeted files of the
disaster recovery management unit. Refer to FIG. 9.

One or more embodiments of the invention, or elements
thereof, can be implemented in the form of an apparatus
including a memory and at least one processor that is coupled
to the memory and operative to perform exemplary method
steps.

One or more embodiments can make use of software run-
ning on a general purpose computer or workstation. With
reference to FIG. 1, such an implementation might employ,
for example, a processor 16, a memory 28, and an input/
output interface 22 to a display 24 and external device(s) 14
such as a keyboard, a pointing device, or the like. The term
“processor” as used herein is intended to include any process-
ing device, such as, for example, one that includes a CPU
(central processing unit) and/or other forms of processing
circuitry. Further, the term “processor” may refer to more
than one individual processor. The term “memory” is
intended to include memory associated with a processor or
CPU, such as, for example, RAM (random access memory)
30, ROM (read only memory), a fixed memory device (for
example, hard drive 34), a removable memory device (for
example, diskette), a flash memory and the like. In addition,
the phrase “input/output interface” as used herein, is intended
to contemplate an interface to, for example, one or more
mechanisms for inputting data to the processing unit (for
example, mouse), and one or more mechanisms for providing
results associated with the processing unit (for example,
printer). The processor 16, memory 28, and input/output
interface 22 can be interconnected, for example, via bus 18 as
part of a data processing unit 12. Suitable interconnections,
for example via bus 18, can also be provided to a network
interface 20, such as a network card, which can be provided to
interface with a computer network, and to a media interface,

10

15

20

25

30

35

40

45

50

55

60

65

14

such as a diskette or CD-ROM drive, which can be provided
to interface with suitable media.

Accordingly, computer software including instructions or
code for performing the methodologies of the invention, as
described herein, may be stored in one or more of the asso-
ciated memory devices (for example, ROM, fixed or remov-
able memory) and, when ready to be utilized, loaded in part or
in whole (for example, into RAM) and implemented by a
CPU. Such software could include, but is not limited to,
firmware, resident software, microcode, and the like.

A data processing system suitable for storing and/or
executing program code will include at least one processor 16
coupled directly or indirectly to memory elements 28 through
a system bus 18. The memory elements can include local
memory employed during actual implementation of the pro-
gram code, bulk storage, and cache memories 32 which pro-
vide temporary storage of at least some program code in order
to reduce the number of times code must be retrieved from
bulk storage during implementation.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, and the like) can be
coupled to the system either directly or through intervening
1/O controllers.

Network adapters 20 may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

As used herein, including the claims, a “server” includes a
physical data processing system (for example, system 12 as
shown in FIG. 1) running a server program. It will be under-
stood that such a physical server may or may not include a
display and keyboard.

one or more embodiments are particularly significant in the
context of a cloud or virtual machine environment, although
this is exemplary and non-limiting. Reference is made back to
FIGS. 1-3 and accompanying text. One or more embodiments
utilize scripts running on machines 416, 420, 424, 430, 408,
422,426, 432 with agents on machines 414, 418, 438, 428, as
described elsewhere herein. Scripts and/or agents can also
employed in connection with other aspects such as, for
example, DR failover manager 410, DR failback manager
599, and/or site-level failback manager 597.

It should be noted that any of the methods described herein
can include an additional step of providing a system compris-
ing distinct software modules embodied on a computer read-
able storage medium; the modules can include, for example,
any or all of the appropriate elements depicted in the block
diagrams and/or described herein; by way of example and not
limitation, any one, some or all of the modules/blocks and or
sub-modules/sub-blocks in the figures; e.g., 408, 414, 416,
420,422,410, 424, 426, 430, 432, 597, 599,912,914, and/or
related scripts and/or agents. The method steps can then be
carried out using the distinct software modules and/or sub-
modules of the system, as described above, executing on one
or more hardware processors such as 16. Further, a computer
program product can include a computer-readable storage
medium with code adapted to be implemented to carry out
one or more method steps described herein, including the
provision of the system with the distinct software modules.
Exemplary System and Article of Manufacture Details

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)

US 9,317,380 B2

15

having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program

40

45

55

16

instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more execut-
able instructions for implementing the specified logical func-
tion(s). In some alternative implementations, the functions
noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of'the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hardware
and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

US 9,317,380 B2

17

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:

1. A method comprising:

during normal operation, at a first site, of a disaster recov-

ery management unit comprising at least one customer

workload machine and at least one management service

machine, replicating to a remote disaster recovery site

said at least one customer workload machine, said at

least one management service machine, and metadata

for said at least one management service machine; and

after a disaster at said first site:

bringing up, at said remote disaster recovery site, a rep-
licated version of said at least one customer workload
machine;

bringing up, at said remote disaster recovery site, a rep-
licated version of said at least one management ser-
vice machine; and

reconfiguring a replicated version of said metadata for
said at least one management service machine by
executing on said replicated version of said at least
one management service machine a failover script, to
obtain reconfigured replicated metadata for said rep-
licated version of said at least one management ser-
vice machine, so that said replicated version of said at
least one management service machine can provide
said management service to said replicated version of
said at least one customer workload machine in said
remote disaster recovery site;

wherein said reconfiguring step comprises:

uninstalling agents and rules from said replicated version

of said at least one customer workload machine in said
remote disaster recovery site;

reinstalling said agents and redeploying said rules on said

replicated version of said at least one customer workload
machine in said remote disaster recovery site, using at
least one of new host names and new internet protocol
addresses appropriate for said remote disaster recovery
site; and

updating a configuration file of said replicated version of

said at least one management service machine to point to
areplicated policy mapper server in said remote disaster
recovery site.

2. A non-transitory computer readable storage medium
comprising computer executable instructions which when
executed by a computer cause the computer to perform the
method of:

during normal operation, at a first site, of a disaster recov-

ery management unit comprising at least one customer
workload machine and at least one management service
machine, replicating to a remote disaster recovery site
said at least one customer workload machine, said at

10

30

35

40

45

18

least one management service machine, and metadata
for said at least one management service machine; and
after a disaster at said first site:
bringing up, at said remote disaster recovery site, a rep-
licated version of said at least one customer workload
machine;
bringing up, at said remote disaster recovery site, a rep-
licated version of said at least one management ser-
vice machine; and
reconfiguring a replicated version of said metadata for
said at least one management service machine by
executing on said replicated version of said at least
one management service machine a failover script, to
obtain reconfigured replicated metadata for said rep-
licated version of said at least one management ser-
vice machine, so that said replicated version of said at
least one management service machine can provide
said management service to said replicated version of
said at least one customer workload machine in said
remote disaster recovery site;
wherein said reconfiguring comprises:
uninstalling agents and rules from said replicated version
of said at least one customer workload machine in said
remote disaster recovery site;
reinstalling said agents and redeploying said rules on said
replicated version of said at least one customer workload
machine in said remote disaster recovery site, using at
least one of new host names and new internet protocol
addresses appropriate for said remote disaster recovery
site; and
updating a configuration file of said replicated version of
said at least one management service machine to point to
areplicated policy mapper server in said remote disaster
recovery site.
3. An apparatus comprising:
a memory; and
at least one processor, coupled to said memory, and opera-
tive to:
during normal operation, at a first site, of a disaster
recovery management unit comprising at least one
customer workload machine and at least one manage-
ment service machine, replicate to a remote disaster
recovery site said at least one customer workload
machine, said at least one management service
machine, and metadata for said at least one manage-
ment service machine; and
after a disaster at said first site:
bring up, at said remote disaster recovery site, a rep-
licated version of said at least one customer work-
load machine;
bring up, at said remote disaster recovery site, a rep-
licated version of said at least one management
service machine; and
reconfigure a replicated version of said metadata for
said at least one management service machine by
executing on said replicated version of said at least
one management service machine a failover script,
to obtain reconfigured replicated metadata for said
replicated version of said at least one management
service machine, so that said replicated version of
said at least one management service machine can
provide said management service to said replicated
version of said at least one customer workload
machine in said remote disaster recovery site;

US 9,317,380 B2

19

wherein said at least one processor is operative to recon-
figure by:

uninstalling agents and rules from said replicated version
of said at least one customer workload machine in said
remote disaster recovery site;

reinstalling said agents and redeploying said rules on said
replicated version of said at least one customer workload
machine in said remote disaster recovery site, using at
least one of new host names and new internet protocol
addresses appropriate for said remote disaster recovery
site; and

updating a configuration file of said replicated version of
said at least one management service machine to point to
areplicated policy mapper server in said remote disaster
recovery site.

15

20

